翻訳と辞書 |
Gödel's β function : ウィキペディア英語版 | Gödel's β function In mathematical logic, Gödel's ''β'' function is a function used to permit quantification over finite sequences of natural numbers in formal theories of arithmetic. The ''β'' function is used, in particular, in showing that the class of arithmetically definable functions is closed under primitive recursion, and therefore includes all primitive recursive functions. == Definition ==
The ''β'' function takes three natural numbers as arguments. It is defined as :''β''(''x''1, ''x''2, ''x''3) = rem(''x''1, 1 + (''x''3 + 1) · ''x''2) = rem(''x''1, (''x''3 · ''x''2 + ''x''2 + 1) ) where rem(''x'', ''y'') denotes the remainder after integer division of ''x'' by ''y'' (Mendelson 1997:186).
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Gödel's β function」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|